skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Kehuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent years have witnessed the rapid progress in deep learning (DL), which also brings their potential weaknesses to the spotlights of security and machine learning studies. With important discoveries made by adversarial learning research, surprisingly little attention, however, has been paid to the realworld adversarial techniques deployed by the cybercriminal to evade image-based detection. Unlike the adversarial examples that induce misclassification using nearly imperceivable perturbation, real-world adversarial images tend to be less optimal yet equally e ective. As a first step to understand the threat, we report in the paper a study on adversarial promotional porn images (APPIs) that are extensively used in underground advertising. We show that the adversary today’s strategically constructs the APPIs to evade explicit content detection while still preserving their sexual appeal, even though the distortions and noise introduced are clearly observable to humans. To understand such real-world adversarial images and the underground business behind them, we develop a novel DL-based methodology called Mal`ena, which focuses on the regions of an image where sexual content is least obfuscated and therefore visible to the target audience of a promotion. Using this technique, we have discovered over 4,000 APPIs from 4,042,690 images crawled from popular social media, and further brought to light the unique techniques they use to evade popular explicit content detectors (e.g., Google Cloud Vision API, Yahoo Open NSFW model), and the reason that these techniques work. Also studied are the ecosystem of such illicit promotions, including the obfuscated contacts advertised through those images, compromised accounts used to disseminate them, and large APPI campaigns involving thousands of images. Another interesting finding is the apparent attempt made by cybercriminals to steal others’ images for their advertising. The study highlights the importance of the research on real-world adversarial learning and makes the first step towards mitigating the threats it poses. 
    more » « less